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Collapsing and monopole classes of 3-manifolds
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Abstract

By applying the L2-estimate of the scalar curvature of a Riemannian 3-manifold with a Seiberg–Witten monopole class to a
collapsing sequence of metrics, we obtain conditions to be a monopole class on certain 3-manifolds. This also gives a relation
between a maximizing sequence of the Yamabe constants and the collapsing on a 3-manifold with a non-torsion monopole class.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 57R57; 57M50; 53C99

Keywords: Seiberg–Witten monopole; Scalar curvature; Collapsing; Yamabe constant

1. Introduction and statement of the main results

While the Seiberg–Witten theory gives information about the differential topology of the manifold independent
of the Riemannian metric, it also tells us about the possible Riemannian geometry of the manifold. One of the well-
known facts of this kind is that if a 3- or 4-manifold has a nontrivial Seiberg–Witten invariant, it cannot admit a metric
of positive scalar curvature. This is an immediate consequence of the Weitzenböck formula. LeBrun exploited the
Weitzenböck formula to produce various forms of the curvature estimate.

Theorem 1.1 (LeBrun [11–13]). Let (X, g) be a smooth closed oriented Riemannian 4-manifold. Suppose that (X, g)
has a solution of the Seiberg–Witten equations for a Spinc structure with the first Chern class c1. Then∫

X
(s−)

2dµ ≥ 32π2(c+

1 )
2,

where s− denotes the pointwise minimum of zero and the scalar curvature s of g, and c+

1 is the g-self-dual harmonic
part of c1. If c1 is a monopole class, then∫

X
|r |

2dµ ≥ 16π2(c+

1 )
2
− 8π2(2χ + 3τ)(X),

where r is the Ricci curvature of g, and χ(X) and τ(X) denote the Euler characteristic and the signature of X,
respectively.

∗ Corresponding address: Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejon 305-701, Republic of
Korea.

E-mail address: cysung@kaist.ac.kr.

0393-0440/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2006.04.006

http://www.elsevier.com/locate/jgp
mailto:cysung@kaist.ac.kr
http://dx.doi.org/10.1016/j.geomphys.2006.04.006


550 C. Sung / Journal of Geometry and Physics 57 (2007) 549–559

When c+

1 6= 0, the equality in each case is attained iff g is a Kähler metric of negative constant scalar curvature
with the Kähler form being a multiple of c+

1 .

Here, a class α ∈ H2(X,Z) is called a monopole class if it arises as the first Chern class of a Spinc structure for
which the Seiberg–Witten equations admit a solution for every choice of a Riemannian metric on X .

These inequalities lead to a vanishing theorem for the Seiberg–Witten invariant on a 4-manifold with an F-structure
which was introduced by Cheeger and Gromov [4,5] generalizing an effective torus action.

Definition 1. An F-structure on a smooth manifold is given by data (Ui , Ûi , T ki ) with the following conditions:

(1) {Ui } is a locally finite open cover.
(2) πi : Ûi 7→ Ui is a finite Galois covering with covering group Γi .
(3) A torus T ki of dimension ki acts effectively on Ûi in a Γi -equivariant way, i.e., Γi also acts on T ki as an

automorphism so that

γ (gx) = γ (g)γ (x)

for any γ ∈ Γi , g ∈ T ki , and x ∈ Ûi .
(4) If Ui ∩ U j 6= ∅, then there is a common covering of π−1

i (Ui ∩ U j ) and π−1
j (Ui ∩ U j ) such that the lifted actions

of T ki and T k j commute.

An F-structure is called polarized if each T ki action is locally free, and of positive rank if every orbit is of
positive dimension. They have shown that a smooth compact manifold admits an F-structure of positive rank iff
it admits a sequence of Riemannian metrics gδ such that, as δ → 0, the injectivity radius converges uniformly to 0
at all points while the sectional curvatures stay uniformly bounded. Paternain and Petean [15] showed that a smooth
compact manifold with an F-structure admits a sequence of Riemannian metrics with volume form converging to zero
uniformly while the sectional curvatures are bounded below.

Now the first inequality in the above theorem implies that if X admits an F-structure, then a monopole class cannot
arise for any Spinc structure with c2

1 > 0. According to Paternain and Petean [15], every compact Kähler surface of
Kodaira dimension 0 or 1 admits an F-structure. Whether this is still true for symplectic 4-manifolds is not known yet,
and there are minimal symplectic 4-manifolds X of Kodaira dimension 0 or 1 which admit a polarized F-structure so
that they have a sequence of metrics {gi } with∫

X
s2

gi
dµgi → 0 = 32π2c2

1(X),

and ∫
X

|rgi |
2dµgi → 0 = 16π2c2

1(X)− 8π2(2χ + 3τ)(X),

but they never admit a Kähler or even a complex structure. Fernández, Gotay and Gray’s example [6] is a T 2-bundle
over T 2 admitting a free S1-action and Gompf’s example [8] is simply connected. He constructed it by taking a
symplectic sum of simply connected elliptic surfaces E(1)p and E(1)q along generic fibers of tori, where the gluing
map preserves a local S1-action to give a global polarized F-structure.

Now we delve into the case of 3-manifolds. Similar curvature estimates also hold.

Theorem 1.2. Let (M, g) be a smooth closed oriented Riemannian 3-manifold with b1(M) ≥ 1. Suppose that (M, g)
has a solution of the Seiberg–Witten equations for a Spinc structure with the first Chern class c1, and [ω] is a nonzero
element in H1

DR(M). Then∫
M
(s−)

2dµ ≥
16π2

|c1 ∪ [ω]|
2∫

M |ω|2dµ
. (1)

If the Seiberg–Witten invariant of the Spinc structure is nonzero, then∫
M

|r |
2dµ ≥

8π2
|c1 ∪ [ω]|

2∫
M |ω|2dµ

. (2)
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When [c1] 6= 0 ∈ H2
DR(M), the equality in each case holds iff (M × S1, g + dt2) is a Kähler metric of negative

constant scalar curvature with the Kähler form a multiple of

∗g ch
1 + ch

1 ∧ dt,

and ω = ωh is a multiple of ∗g ch
1 , where ∗g is the Hodge star with respect to g, and (·)h denotes the harmonic part.

When [c1] = 0 ∈ H2
DR(M), if we assume that (M, g) has a solution of any perturbed Seiberg–Witten equations

for such c1, then the equality in each case holds iff (M, g) is a flat manifold T 3/Γ such that (M × S1, g + dt2) is
Kähler with the Kähler form a multiple of

∗g ω
h

+ ωh
∧ dt.

As in the case of symplectic 4-manifolds, we show an example of a contact 3-manifold which has a sequence of
Riemannian metrics whose L2-norm of curvature converges to the lower bound given by the contact structure but does
not admit a Kähler structure on M × S1.

Theorem 1.3. Let M be a closed oriented 3-manifold which fibers over the circle with the fiber F being a Riemann
surface of Euler characteristic χ(F) ≤ 0. Let π : M → S1 be the projection map and [ω] be a nonzero element of
H1

DR(S
1). Then there exists a sequence of metrics {gi } on M such that(∫

M
s2

gi
dµgi

)(∫
M

|π∗ω|
2
gi

dµgi

)
→ 16π2

|c1 ∪ [π∗ω]|
2,

and (∫
M

|rgi |
2dµgi

)(∫
M

|π∗ω|
2
gi

dµgi

)
→ 8π2

|c1 ∪ [π∗ω]|
2.

Here c1 is a monopole class χ(F)[F] given by the contact structure near the 2-planes of the fibers.
But for a certain monodromy M × S1 never admits a Kähler structure.

The L2-estimate of the scalar curvature on a 3-manifold can also give conditions to be a monopole class
on F-structured 3-manifolds, also known as graph manifolds. Indeed a collapsing sequence of metrics from the
Cheeger–Gromov theory [4] gives a restriction to be a monopole class. First, it is easy to see that Theorem 1.2
says that a monopole class should have intersection number zero with any [ω] such that [ω] restricts to zero on each
circle given by the orbits of the F-structure. This method also applies to a connected sum of graph manifolds and any
other 3-manifolds, and the 3-manifolds obtained by gluing hyperbolic 3-manifolds and graph manifolds along tori.
But noting that the Poincaré-dual of such [ω] can be represented by an embedded torus, these facts also follow from
the well-known adjunction inequality. An interesting application is the following one.

Theorem 1.4. Let M be a closed oriented 3-manifold which fibers over the circle with a periodic monodromy, and
N be a closed oriented 3-manifold. Then the rational part of a monopole class of M#N is of the form m[F] for an
integer m satisfying |m| ≤ |χ(F)|, where χ(F) is the Euler characteristic of the fiber F.

Theorem 1.2 has a relation to the Yamabe problem too. The Yamabe constant Y (M, [g]) of a conformal class
[g] ≡ {e f g| f ∈ C∞(M)} is defined as

inf
g̃∈[g]

∫
M sg̃ dµg̃

(Volg̃)
n−2

n

,

where n = dim M and Volg̃ =
∫

M dµg̃ , and the Yamabe invariant Y (M) of M is defined as

sup
[g]

Y (M, [g]),

where the supremum is taken for all the conformal classes on M .

Theorem 1.5. Let (M, g) be a closed oriented Riemannian 3-manifold. Suppose c1 is a non-torsion monopole class.
Then
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Y (M, [g]) ≤ −
4π |c1 ∪ [ω]|

(
∫

M |ω|
3
g dµg)

1
3

for any nonzero [ω] ∈ H1
DR(M), with the equality iff (M × S1, g +dt2) is a Kähler metric of negative constant scalar

curvature with the Kähler form a multiple of ∗g ω + ω ∧ dt .

A maximizing sequence of the Yamabe constants is supposed to reveal the structure of a 3-manifold [1]. For a
closed 3-manifold M with Y (M) ≤ 0,

Y (M) = − inf
g̃∈M1

(∫
M
(s−)

2
g̃dµg̃

) 1
2

,

where M1 is the space of smooth unit-volume Riemannian metrics on M . With this in mind we have

Theorem 1.6. Let M be a closed oriented 3-manifold. Suppose there exists a non-torsion monopole class. Let (gi )

be any sequence of unit-volume Riemannian metrics on M such that
∫

M (s−)
2
gi

dµgi → 0. Then the injectivity radius
converges to zero as i → ∞.

2. A brief review of Seiberg–Witten theory on the 3-manifold

Let (M, g) be a closed oriented Riemannian 3-manifold. A Spinc structure ξ on M is a Spinc(3)-lift of the
orthonormal frame bundle. We denote the associated U (2)-bundle by W and its determinant line bundle by L . We
choose a unique action of the complex Clifford algebra bundle Cl(T ∗Y )⊗ C on W such that the volume form acts as
either Id or −Id. The Levi-Civita connection on T M and a U (1)-connection A on L induce a Spinc connection on W
and the associated Dirac operator DA : Γ (W ) → Γ (W ) is given by

DA =

∑
i

ei · ∇
A
ei
,

where {ei } is an orthonormal frame of T M , · denotes the Clifford action, and ∇
A is the covariant derivative of the

Spinc connection.
For a section Φ of W , a perturbed Seiberg–Witten equation of (A,Φ) is given by

(∗)

DAΦ = 0

FA + i ∗ ω = Φ ⊗ Φ∗
−

|Φ|
2

2
Id,

where FA = d A is the curvature of A, and a real-valued coclosed 1-form ω is a perturbation term. In the second
equation the identification of the two sides comes from the isomorphism between ∧

2(M)⊗ iR and su(W )⊗ iR given
by the Clifford action.

Since the gauge transformation group G ≡ {ei f
| f ∈ C∞(M)} acts on the solution space of (∗), the

Seiberg–Witten moduli space M is defined as the space of solutions of (∗) modulo G. In the topology induced
from an appropriate Sobolev space,M is compact, and moreover it is a smooth 0-dimensional manifold for a generic
choice of ω if b1(M) > 0.

Now a numeric topological invariant of M is obtained by counting M in an appropriate way. For instance, we
give an orientation on M from a fixed orientation of H2(M,R). Then the Seiberg–Witten invariant SW (M, ξ) is
independent of the choice of g and ω, if b1(M) > 1. In the case of b1(M) = 1, it depends only on the component
of H2(M,R) − {c1(L)R} in which [−

1
2π ∗ ω] lies. Even when b1(M) = 0, by adding a counter-term given by the

spectral invariants of Atiyah, Patodi and Singer, an invariant independent of g and ω can be defined. For more details,
readers are referred to [14].

3. A proof of Theorem 1.2

Put the product metric g + dt2 on M × S1, where t ∈ [0, 1] is a global coordinate of S1. Note that any solution
of the Seiberg–Witten equations of (M, g) is a t-invariant solution of the corresponding Seiberg–Witten equations on
(M × S1, g + dt2), and SW (M, ξ) = SW (M × S1, π∗ξ) for any Spinc structure ξ .
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Now let us apply those estimates in Theorem 1.1; we get∫
M
(s−)

2
g dµg =

∫
M×S1

(s−)
2
g+dt2 dµg+dt2 ≥ 32π2((π∗c1)

+)2 (3)

= 32π2

(
π∗ch

1 + π∗(∗g ch
1 ) ∧ dt

2

)2

= 16π2
〈π∗ch

1 ∧ π∗(∗g ch
1 ) ∧ dt, [M × S1

]〉

= 16π2
〈ch

1 ∧ ∗g ch
1 , [M]〉

≥
16π2

|c1 ∪ [ω]|
2∫

M |ω|
2
g dµg

, (4)

where the last inequality is a combination of the Hölder inequality and the fact that
∫

M |ω|
2
g dµg ≥

∫
M |ωh

|
2
g dµg .

In the Ricci curvature case, from the nonvanishing of the Seiberg–Witten invariant of M × S1 for π∗c1, π∗c1 is a
monopole class of M × S1. Applying Theorem 1.1 with the fact that χ(M × S1) = τ(M × S1) = 0, we get∫

M
|rg|

2 dµg =

∫
M×S1

|rg+dt2 |
2 dµg+dt2 ≥ 16π2((π∗c1)

+)2 (5)

≥
8π2

|c1 ∪ [ω]|
2∫

M |ω|
2
g dµg

. (6)

To decide the equality case, first let us consider the case when [c1] 6= 0 ∈ H2
DR(M). Note from [13] that the

equality of the 4-dimensional case in (5) holds iff the equality in (3) holds. The equality (3) or (5) holds iff g + dt2 is
a Kähler metric of negative constant scalar curvature with the Kähler form a multiple of

(π∗c1)
+

=
π∗(∗g ch

1 )+ π∗ch
1 ∧ dt

2
.

The equalities (4) and (6) hold iff

ω = ωh
= ∗g ch

1 .

Now let us suppose [c1] = 0 ∈ H2
DR(M). First, the equalities (4) and (6) are automatic. Obviously the equality in

(5) holds iff g + dt2 is Ricci-flat, which is again iff g is flat.
If the equality in (3) holds, (s−)g ≡ 0. We claim that sg ≡ 0. Consider

Lemma 3.1 (LeBrun [12]). Let (X, g) be a smooth closed oriented Riemannian 4-manifold with b+

2 (X) ≥ 1, and
Ω be a nonzero self-dual harmonic 2-form. Suppose that ξ is a Spinc structure with first Chern class c1 and its
Seiberg–Witten equations perturbed by irΩ have a solution for any r ∈ R. Then∫

X
s
|Ω |
√

2
dµ ≤ 4πc1 ∪ [Ω ].

The equality holds iff it is Kähler with the Kähler form a positive multiple of Ω .

Applying this lemma to (M × S1, g + dt2) with Ω = π∗(∗g ω̃
h)+π∗ω̃h

∧ dt for any nonzero [ω̃] ∈ H1
DR(M), the

equality in (3) holds iff g+dt2 is a scalar-flat Kähler metric with the Kähler form a multiple of π∗(∗g ω̃
h)+π∗ω̃h

∧dt .
On scalar-flat Kähler surfaces, the self-dual Weyl curvature W+ is zero (see [2]), and hence the 4-dimensional
Chern–Gauß–Bonnet theorem

1

8π2

∫
M×S1

|rg+dt2 |
2dµg+dt2 =

1

π2

∫
M×S1

(
1
24
(sg+dt2)

2
+

1
2
|W+|

2
g+dt2

)
dµg+dt2 − (2χ + 3τ)(M × S1)

= 0
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implies that g + dt2 is Ricci-flat, i.e., g is flat. By the Bieberbach theorem [18], every closed flat 3-manifold is a finite
quotient of T 3. This completes the proof.

Remark. In the above T 3/Γ × S1 is actually T 4 or a hyperelliptic surface. Since the first Chern class of the canonical
line bundle is a torsion, the Kodaira dimension of X is zero. By the Enriques–Kodaira classification of Kähler surfaces,
there are four types: Enriques surfaces, K3 surfaces, complex tori and hyperelliptic surfaces. Since the first two types
have b1 = 0, they are excluded. All hyperelliptic surfaces have b+

2 = 1 so that our T 3/Γ should have b1 = 1 except
for T 3. �

Remark. When ∗g ω + ω ∧ dt is parallel, ω is g-parallel because dt is parallel too. If ω is parallel, ω and ∗g ω give
a parallel splitting of T M so that g is locally a product metric. Therefore a Riemannian 3-manifold (M, g) such that
(M × S1, g + dt2, ∗g ω + ω ∧ dt) for ω ∈ ∧

1(M) is a Kähler metric of constant scalar curvature is a quotient of
S2

× R, or R3, or H2
× R with the obvious product metric. �

It seems very plausible to conjecture the following:

Conjecture 3.2. The same Ricci curvature estimate also holds for monopole classes.

4. A proof of Theorem 1.3

Let t ∈ [0, 1] be a global coordinate of the base S1 with a metric dt2. Put a smooth metric g on M such that π is a
Riemannian submersion. Write g = ht + π∗dt2, where ht is any smooth S1-parameter family of Riemannian metrics
on the fiber F . Since χ(F) ≤ 0, by the Poincaré uniformization theorem, each fiber with the metric ht admits a unique
smooth conformal change to a metric of constant curvature and volume 1. Let eϕt be such a conformal factor for ht .

Lemma 4.1. As t varies, eϕt defines a smooth function on M.

Proof. Since the smoothness is a local property, we will consider I × F ⊂ M for an interval I . Suppose χ(F) < 0.
Then the equation that ϕt satisfies is

Pt (ϕt ) ≡ ∆tϕt − 4πχ(F)eϕt + st = 0, (7)

where ∆t and st are the Hodge Laplacian and the scalar curvature of the metric ht respectively. Let Ck,α(F) for
k ∈ N and α ∈ (0, 1] be the Banach space of real-valued continuous functions on F with bounded Ck,α-norm. The
linearization P̄t of the smooth map Pt : Ck+2,α(F) → Ck,α(F) at ϕt is

∆t − 4πχ(F)eϕt (·)

which is a self-adjoint elliptic operator, and its index is equal to 0. Let ψ ∈ Ck,α(F) be an element of the kernel of
P̄t . Since χ(F) < 0, ψ = 0, implying that P̄t is an isomorphism. Considering a smooth map P

P : I × Ck+2,α(F) → Ck,α(F),

where P(t, ψ) = Pt (ψ), the solution space P−1(0) is a smooth 1-dimensional submanifold of I × Ck+2,α(F) by the
Banach-space inverse function theorem.

When χ(F) = 0, the equations that ϕt satisfy are

Pt (ϕt ) = ∆tϕt + st = 0, and Qt (ϕt ) ≡

∫
F

eϕt dµht − 1 = 0.

The kernel and cokernel of the linearization P̄t of Pt are R · 1. Consider a smooth map

(Π ◦ Pt , Qt ) : Ck+2,α(F) → Ck,α(F)/R ⊕ R,

where Π : Ck,α(F) → Ck,α(F)/R is the projection map. Then the linearization of (Π ◦ Pt , Qt ) is an isomorphism.
In the same way as above, considering a smooth map

P : I × Ck+2,α(F) → Ck,α(F)/R ⊕ R,

where P(t, ψ) = (Π ◦ Pt , Qt ), the solution space given by P−1(0) is a smooth 1-dimensional submanifold.
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Now the proof proceeds regardless of χ(F). Define a map

Φ1 : I × F → Ck+2,α(F)× F

by Φ1(t, x) = (ϕt , x) for (t, x) ∈ I × F . By the above result, Φ1 is a smooth map. Also consider a map

Φ2 : Ck+2,α(F)× F → R,

where Φ2(ψ, x) = ψ(x) for (ψ, x) ∈ Ck+2,α(F)× F . One can easily check that Φ2 is Ck+2-differentiable. Therefore
the composition Φ2 ◦ Φ1 : I × F → R, which is our anticipated function, is a Ck+2-function. Since k is arbitrary, it
has to be a smooth function. �

Define a new smooth metric g̃l on M for a constant l > 0 by

g̃l = eϕt ht + l2π∗dt2.

As l tends to ∞, the sectional curvature of the plane spanned by a vertical vector and a horizontal vector converges
to 0, and the sectional curvature of the plane spanned by vertical vectors converges to the sectional curvature of
(F, eϕt ht ) which is 2πχ(F). Therefore for any ε > 0, there exists L > 0 such that |sg̃l − 4πχ(F)| < ε on M for
l ≥ L , where 4πχ(F) is the scalar curvature of eϕt ht .

We will denote the volume element dµeϕt ht on F simply by dµt . Using the fact that st is constant on F for each t
and

∫
F dµt = 1, for l ≥ L∫

M
s2

g̃l
dµg̃l ≤

∫
M
(|4πχ(F)| + ε)2dµg̃l

= (|4πχ(F)| + ε)2
∫

S1

∫
F

l dµt dt

= (|4πχ(F)| + ε)2l,

and ∫
M

|π∗dt |2g̃l
dµg̃l =

∫
S1

∫
F

1

l2 l dµt dt =
1
l
.

So (∫
M

s2
g̃l

dµg̃l

)(∫
M

|π∗dt |2g̃l
dµg̃l

)
≤ (|4πχ(F)| + ε)2.

Likewise we get(∫
M

s2
g̃l

dµg̃l

)(∫
M

|π∗dt |2g̃l
dµg̃l

)
≥ (|4πχ(F)| − ε)2.

Therefore, as l → ∞,(∫
M

s2
g̃l

dµg̃l

)(∫
M

|π∗dt |2g̃l
dµg̃l

)
→ |4πχ(F)|2.

For a proof that χ(F)[F] is a monopole class, one may refer to [10]. And

|c1 ∪ [π∗dt]| = |χ(F)|,

because [F] is the Poincaré-dual of [π∗dt]. The Ricci curvature estimate is also obtained in the same way.
For an example without a Kähler structure, one can easily construct such M with b1(M) even so that M × S1

never admits a Kähler structure, although it admits a symplectic structure compatible with the contact structure of M .
Thurston’s example [17] is one of this kind.

Remark. One can also show that ‖π∗dt − (π∗dt)h‖L2 → 0 as l → ∞. �

Remark. One may expect to find M such that M × S1 cannot admit even a complex structure. �
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5. A proof of Theorem 1.4

Let f be the monodromy diffeomorphism and π : M → S1 be the projection map. Also let t ∈ [0, 1] be a
coordinate of the base S1. The nontrivial first de Rham cohomologies of M and hence M#N come from

π∗dt, and {σ ∈ H1
DR(F)| f ∗σ is cohomologous to σ }.

Indeed the latter ones can be explicitly expressed as

1
|G|

∑
fi ∈G

f ∗

i σ

for each such σ , where G is the finite group generated by f .
First, since [F] ∈ H2(M#N ,Z) is the Poincaré-dual to π∗dt , from the adjunction inequality, it easily follows that

the intersection number of a monopole class and π∗dt is an integer between χ(F) and −χ(F). (In fact one can also
derive this by using our inequality of Theorem 1.2.) Since [F] is not a positive integral multiple of any other element
of H2(M,Z), m must be an integer between χ(F) and −χ(F).

To show that the coefficients for other cohomology classes all vanish, we need to use a collapsing sequence of
metrics on M . Take any Riemannian metric on F and let gF be the metric obtained by taking the average of the initial
metric by the G-action, so that f is an isometry of gF . Put the metric ε2dt2 on the base S1. Now we can define a
smooth metric gε on M as the Riemannian submersion onto (S1, ε2dt2) with totally geodesic fibers (F, gF ). Since
the O’Neill tensor is zero, gε is a locally product metric. Let C1 ≡

∫
F (s−)

2
gF

dµgF > 0 so that∫
M
(s−)

2
gεdµgε = C1ε.

On N we put any metric h so that∫
M
(s−)

2
h dµh ≤ C2

for a constant C2 > 0.
For [σ ] ∈ H1

DR(F) we can take its representative σ such that ω ≡
1

|G|

∑
fi ∈G f ∗

i σ is identically zero on an open

ball B ⊂ F . Let D ≡
∫

F |ω|
2
gF

dµgF > 0. Denoting the 1-form on M coming from ω also by ω, ω is zero on an open
set B × (− ε

3 ,
ε
3 ) ⊂ M .

Now take a connected sum M#N by performing the Gromov–Lawson method of surgery [9,16] on B × (− ε
3 ,

ε
3 )

such that a resulting metric gε#h satisfies∫
M#N

(s−)
2
gε#h dµgε#h ≤ (C1ε + C2 + 1),

and ∫
M#N

|ω|
2
gε#h dµgε#h = Dε.

Then by Theorem 1.2

|4πc1 ∪ [ω]| ≤ (C1ε + C2 + 1)Dε.

As ε → 0, we get the desired conclusion.

Remark. When N = S3, from the above construction one can see that M × S1 has a Kähler structure of elliptic type
with the canonical line bundle equal to −χ(F)[F]. In such a case the result also follows from the computation of the
monopole classes on Kähler surfaces [7].

6. A proof of Theorem 1.5

It is well known that on any closed n-manifold the Yamabe constant is always achieved by a metric of constant
scalar curvature, which we call a Yamabe minimizer. Using the technique of Besson, Courtois, and Gallot [3], the
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Yamabe constant can be also written as:

Lemma 6.1. Let [g] be a conformal class on a closed n-manifold M with n ≥ 3. Then for r ∈ [
n
2 ,∞],

|Y (M, [g])| = inf
g̃∈[g]

(∫
M

|sg̃|
r dµg̃

) 1
r

(Volg̃)
2
n −

1
r

where the infimum is realized only by a Yamabe minimizer.

Proof. When Y (M, [g]) ≥ 0, the proof is easy. Simply by the Hölder inequality,

Y (M, [g]) = inf
g̃∈[g]

∫
M sg̃ dµg̃

(Volg̃)
n−2

n

≤ inf
g̃∈[g]

(
∫

M |sg̃|
r dµg̃)

1
r (Volg̃)1−

1
r

(Volg̃)
n−2

n

with the equality iff g̃ is a Yamabe minimizer.
Now suppose Y (M, [g]) ≤ 0 and g is a Yamabe minimizer. Write g̃ = u p−2g, where p =

2n
n−2 and u > 0. Recall

that sg̃u p−1
= sgu + 4 n−1

n−2∆gu. Therefore(∫
M

|sg̃|
r dµg̃

) 1
r

(Volg̃)
2
n −

1
r =

(∫
M

|sg̃|
r u

n(p−2)
2 dµg

) 1
r
(∫

M
u

n(p−2)
2 dµg

) 2
n −

1
r

≥

∫
M −sg̃u p−2dµg(∫

M dµg
) n−2

n

=

∫
M −(sg + 4 n−1

n−2
1
u d∗du)dµg

(Volg)
n−2

n

=

∫
M

(
−sg + 4 n−1

n−2
|du|

2

u2

)
dµg

(Volg)
n−2

n

≥

∫
M −sgdµg

(Volg)
n−2

n

= −Y (M, [g]),

where the first inequality is an application of the Hölder inequality, and the equality holds iff u is a positive
constant. �

Since the monopole class c1 is non-torsion, from the estimate of Theorem 1.2 M cannot admit a positive scalar
curvature metric, i.e., Y (M) ≤ 0. The proof of the theorem immediately follows from Theorem 1.2 and the above
lemma as

Y (M, [g]) = − inf
g̃∈[g]

(∫
M

|sg̃|
2dµg̃

) 1
2

(Volg̃)
1
6

≤ − inf
g̃∈[g]

4π |c1 ∪ [ω]|

(
∫

M |ω|
2
g̃ dµg̃)

1
2

(∫
M

dµg̃

) 1
6

≤ − inf
g̃∈[g]

4π |c1 ∪ [ω]|

(
∫

M |ω|
3
g̃ dµg̃)

1
3

= −
4π |c1 ∪ [ω]|

(
∫

M |ω|3g dµg)
1
3

,

where the last equality comes from the fact that |ω|
3
gdµg is conformally invariant. This completes the proof.

Remark. If (M, g) is hyperbolic and has a solution for the Seiberg–Witten equations, we actually have a better
estimate. From LeBrun’s estimate [13],

(Volg+dt2)
1
3

∫
M×S1

∣∣∣∣∣23 sg+dt2 − 2

√
2
3
|W+|g+dt2

∣∣∣∣∣
3

dµg+dt2

 2
3

≥ 32π((π∗c1)
+)2.
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One can easily show that W+ = 0, and hence

4
9

s2
g · Volg ≥

16π2
|c1 ∪ [ω]|

2∫
M |ω|2dµ

.

7. A proof of Theorem 1.6

We can take a smooth closed oriented surface Σ embedded in M representing the dual of the monopole class.
Suppose the contrary, i.e., there exists a constant δ > 0 such that the injectivity radius of gi is greater than δ for

all i . Let E be a normal bundle of Σ in M and put the Euclidean metric on each fiber. Letting the δ-neighborhood of
the zero section in E be N (δ), each gi -exponential map N (δ) diffeomorphically onto a neighborhood of Σ in M .

Note that E is a trivial bundle, since M and Σ are oriented. So we let E = Σ × R, and take a representative for the
Thom class, ω = ρ(r)dr , where a smooth nonnegative function ρ(r) defined on R is supported on [−δ, δ] and has
total mass 1.

We claim that

|ω|gi = ρ(r).

First, |
∂
∂r |gi = 1, and it follows from the Gauss lemma that

ω

(
∂

∂r

)
= ρ(r).

Let v be any tangent vector orthogonal to ∂
∂r . We have to show that ω is zero on v. Letting π : E → Σ be the

projection map, π∗v is orthogonal to ∂
∂r . Applying the first variation formula of the arc length to the 1-parameter

family of our geodesics emanating from Σ given by the variation vector π∗v,

dr(v) =

〈
v,
∂

∂r

〉
gi

−

〈
π∗v,

∂

∂r

〉
gi

= 0.

This proves our claim, and hence we have for any i∫
M

|ω|
2
gi

dµgi ≤

∫
M

C2dµgi = C2,

for a constant C greater than ρ(r) for any r .
But the assumption that

∫
M (s−)

2
gi

dµgi → 0 combined with the Theorem 1.2 gives∫
M

|ω|
2
gi

dµgi ≥
16π2

|c1 ∪ [ω]|
2∫

M (s−)
2
gi

dµgi

→ ∞

as i → ∞, because c1 which is the Poincaré-dual of ω is non-torsion. This contradiction completes the proof.

Example. Let M be Σ × S1 where Σ is a compact Riemann surface of negative Euler characteristic χ(Σ ). Let ξ be
the Spinc structure determined by the complex structure of Σ with c1(ξ) = χ(Σ )[Σ ]. Then SW (M, ξ) = ±1. Since

Y (M) = 0, infg
∫

M (s−)
2
g dµg (Volg)

1
3 = 0, and any minimizing sequence of unit-volume metrics should develop a

collapsing. �

Remark. One can also consider the minimizing sequence for the functional
∫

M s2dµ and ask further whether the
collapsing appears all over M . �
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